高级检索

舷侧阵稀疏优化与目标定位协同设计研究

Research on co-design of sparse optimization and target localization for flank arrays

  • 摘要: 舷侧共形阵作为水下无人航行器声呐系统的典型阵型,其在工程应用中仍面临多重挑战。本文针对现有舷侧阵工程应用中的两个关键问题:平台自噪声干扰和平台的小型化尺寸限制,提出面向工程应用的舷侧共形阵稀疏优化与目标定位协同设计的全流程方法,首次系统性地耦合了平台自噪声抑制(阵列布放位置优化)、阵元稀疏化设计与目标定位性能保障三大环节,解决了传统研究设计中各环节相互割裂的问题。首先,通过流-固耦合仿真,揭示了UUV平台流噪声与振动噪声的空间差异化分布规律,实现基阵布放位置的优化决策。然后,提出基于改进遗传算法的自适应舷侧阵稀疏优化方法。该方法通过动态调整交叉/变异概率,在保证方位估计精度的前提下实现阵元数量缩减。最后,创新性地应用虚拟阵列内插变换技术于稀疏舷侧阵的目标定位,解决了稀疏化导致的主瓣展宽和旁瓣升高问题。通过仿真试验和实航试验验证,本方法能在减少阵元数的同时使空间谱保持较低的最高旁瓣级和更窄的-3dB带宽。研究成果可为新一代水下无人平台声呐系统的紧凑化设计提供理论支撑和工程实践参考。

     

    Abstract: As a typical configuration for sonar systems on unmanned underwater vehicle (UUV), the flank conformal array still faces multiple engineering challenges. This study addresses two critical issues in existing flank array applications: platform self-noise interference and miniaturization constraints. We propose a holistic workflow for the co-design of sparse optimization and target localization in engineering-oriented conformal flank arrays. For the first time, this approach systematically integrates three key aspects: platform self-noise suppression (via array placement optimization), sparse element design, and target localization performance assurance, resolving the traditional disconnect between these isolated design stages.First, fluid-structure interaction simulations reveal the distinct spatial distribution patterns of flow-induced noise and structural vibration noise on UUV platforms, enabling optimal array placement decisions. Subsequently, an adaptive sparse optimization method for flank arrays is developed using an improved genetic algorithm. By dynamically adjusting crossover/mutation probabilities, this approach reduces the number of array elements while maintaining bearing estimation accuracy. Finally, virtual array interpolation technology is innovatively applied to target localization with sparse flank arrays, effectively mitigating mainlobe broadening and sidelobe elevation caused by sparsification. Validation through simulations and lake trials demonstrates that the proposed method achieves reduced array elements while maintaining spatial spectra with lower peak sidelobe levels and narrower -3dB beamwidths. This research provides theoretical underpinnings and practical engineering insights for compact sonar system design in next-generation underwater platforms.

     

/

返回文章
返回