高级检索

儿童异常肺音识别的时序优化神经网络模型

Time series optimization neural network model for identifying abnormal lung sounds in children

  • 摘要: 异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。本文针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合MFCC(mel-scale frequency cepstral coefficients)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(bilstm cnn network)模型。本文收集并建立了一个儿童肺音数据集,在该数据集上,本文的方法平均准确率可达75.3%,较之于以声谱图为输入的CNN(parallel-pooling)模型,准确率提高了3.7%,在模型大小和识别速度上均有改善。

     

    Abstract: Abnormal lung sound auscultation is an important tool for diagnosing bronchopulmonary diseases in children. Addressing the issues of high computational resource demands and low recognition rates commonly associated with spectrogram image recognition methods used in the classification of children's abnormal lung sounds, this paper proposes a hybrid model combining Mel-scale Frequency Cepstral Coefficients (MFCC) features, Convolutional Neural Network (CNN), and Bidirectional Long Short-Term Memory (BiLSTM) network for classifying abnormal lung sounds in children. This method uses CNN to extract spatial features from MFCC, and BiLSTM to capture the temporal characteristics of the MFCC audio features, thereby establishing the BCNnet (BiLSTM-CNN network) model. This paper collects and establishes a dataset of children's lung sounds. On this dataset, the proposed method achieves an average accuracy of 75.3%, representing a 3.7% improvement in accuracy compared to the CNN (parallel-pooling) model that uses spectrograms as input. Additionally, the proposed model demonstrates improvements in both size and recognition speed.

     

/

返回文章
返回