高级检索

基于隐式神经表示的圆周合成孔径声呐图像增强算法

Research on Image Enhancement Method of Circular Synthetic Aperture Sonar Based on Deconvolution

  • 摘要: 使用时域反投影算法的圆周合成孔径声呐图像重建会在远离成像场景中心位置的脉冲响应中引入不对称性,从而导致圆周合成孔径声呐的成像分辨率降低。理论上可以通过成像系统点扩散函数与圆周合成孔径声呐成像结果的反卷积运算来修正图像模糊。由于圆周合成孔径声呐的点扩散函数具有空变性,且反卷积是一个不适定逆问题,对噪声很敏感,导致模糊修正效果不佳。针对点扩散函空变性问题,本文利用隐式神经表示神经网络方法对水中圆周合成孔径声呐图像进行反卷积处理,可以纠正重建图像的高阶相位误差,并通过改进隐式神经表示网络提高算法的鲁棒性。计算机仿真和湖上试验结果表明,该方法比传统反卷积方法具有更好的图像增强效果。

     

    Abstract: The reconstruction of circular synthetic aperture sonar (CSAS) images using the time-domain back-projection algorithm introduces asymmetry in the pulse response, leading to reduced imaging resolution away from the imaging scene center. Theoretically, image blur caused by this asymmetry can be corrected by deconvolution with the point spread function (PSF) of the imaging system. However, the spatial variance in the PSF of CSAS, coupled with the ill-posed nature of deconvolution as an inverse problem, results in poor correction of image blur due to sensitivity to noise. To address the spatial variance in the PSF, this paper utilizes Implicit Neural Representation (INR) neural networks for deconvolution of underwater CSAS images. This approach effectively corrects high-order phase errors in reconstructed images and enhances the algorithm's robustness through improvements in the INR network. Computer simulations and experiments conducted on a lake demonstrate that this method outperforms traditional deconvolution methods, showcasing superior image enhancement capabilities.

     

/

返回文章
返回