高级检索

用于矢量水听器的应力集中MEMS敏感单元仿真研究

Simulation analysis of stress concentrated MEMS sensitive unit for vector hydrophones

  • 摘要: 敏感单元作为同振式矢量水听器的核心元件,其小型化将有助于水听器整体体积和质量的减小。而采用MEMS结构是实现小型化的有效途径。文章针对一种应力集中的MEMS敏感单元进行仿真研究。在质量块-梯形悬臂梁结构基础上,将单梯形悬臂梁改进为双梯形悬臂梁。同时,在悬臂梁近固定端处厚度方向刻蚀凹槽,进一步提高梁上压电层的局部应力。通过有限元仿真,对比三种不同结构敏感单元对应矢量水听器模型的灵敏度频域响应性能,并从梁上应力分布角度对性能差异进行分析。研究发现,相较于单梯形梁,双梯形悬臂梁结构水听器灵敏度提升7.7 dB。此外,增加悬臂梁厚度且在悬臂梁根部刻蚀凹槽,使得对应水听器灵敏度和带宽均得到改善。悬臂梁厚度为80 μm、根部凹槽深度为40 μm、宽度为100 μm的双梯形悬臂梁对应矢量水听器的谐振频率为1 496.8 Hz,灵敏度为−210.8 dB @ 630 Hz (ref. 1 V/μPa)。

     

    Abstract: Sensitive unit is the key component of the co-vibration vector hydrophones, and its miniaturization helps reduce the overall volume and mass of the hydrophone. Simulation research on the MEMS sensitive unit with stress concentration is conducted in this article. Based on a mass block trapezoidal cantilever beam structure, a single trapezoidal cantilever beam is transformed into a double trapezoidal cantilever beam. Moreover, grooves are etched in the thickness direction near the fixed end of the cantilever beam, further increasing the local stress of the piezoelectric layer of the beam. Sensitivity frequency responses of three different structural cantilever beam models for vector hydrophones are compared by finite element simulation. and performance differences from perspectives of stress distribution on beams are analyzed. It is found that the double trapezoidal cantilever beam structure enhanced hydrophone sensitivity by 7.7 dB than that of single trapezoidal beam. Additionally, increasing thickness of the cantilever beam and etching grooves at its root, will improve the sensitivity and bandwidth for vector hydrophones. The resonant frequency of 80 μm thickness double trapezoidal cantilever beam with a root groove of 40 μm depth and 100 μm width is 1 496.8 Hz, while sensitivity is −210.8 dB@ 630 Hz (ref. 1V/μPa).

     

/

返回文章
返回