• 中国科技论文统计源期刊
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 高级检索

    水下小目标合成孔径声呐层析成像技术研究

    陈敬军, 曾赛

    陈敬军, 曾赛. 水下小目标合成孔径声呐层析成像技术研究[J]. 声学技术, 2023, 42(4): 440-445. DOI: 10.16300/j.cnki.1000-3630.2023.04.005
    引用本文: 陈敬军, 曾赛. 水下小目标合成孔径声呐层析成像技术研究[J]. 声学技术, 2023, 42(4): 440-445. DOI: 10.16300/j.cnki.1000-3630.2023.04.005
    CHEN Jingjun, ZENG Sai. Research on synthetic aperture sonar tomographic imaging for small underwater targets[J]. Technical Acoustics, 2023, 42(4): 440-445. DOI: 10.16300/j.cnki.1000-3630.2023.04.005
    Citation: CHEN Jingjun, ZENG Sai. Research on synthetic aperture sonar tomographic imaging for small underwater targets[J]. Technical Acoustics, 2023, 42(4): 440-445. DOI: 10.16300/j.cnki.1000-3630.2023.04.005

    水下小目标合成孔径声呐层析成像技术研究

    详细信息
      作者简介:

      陈敬军(1971-),男,山东费县人,博士、高级工程师,研究方向为信号与信息处理、人工智能。

      通讯作者:

      陈敬军,E-mail:cjj_81@sina.com

    • 中图分类号: TB566

    Research on synthetic aperture sonar tomographic imaging for small underwater targets

    • 摘要: 水下小目标精细成像对于正确识别水下目标具有重要意义。目前,多波束成像声呐和条带合成孔径声呐是获取水下小目标图像的主要手段。水下目标的判别主要利用了目标图像的亮点特征,即使是同一目标从不同方位观测时得到的结果也可能差异较大,这给快速识别确认目标带来了困难。为解决该问题,提出了利用圆周合成孔径声呐对水下小目标进行水声层析成像信号处理方法,提高了声呐的多角度融合观测能力。仿真及试验数据处理结果表明,合成孔径声呐层析成像方法能够获得目标外形轮廓精细特征,有利于水下小目标的正确识别。
      Abstract: Fine imaging of target is significant for the identification of underwater targets. At present, the multi-beam imaging sonar and strip synthetic aperture sonar are the main methods to obtain images of small underwater targets. The target images are mainly characterized by highlight spots, and the results of observing the target from different directions are different, which brings difficulties to the identification and confirmation of targets. In order to solve this problem, a signal processing method using circular synthetic aperture sonar for underwater acoustic tomography of small underwater targets is proposed for improving the multi-angle fusion observation ability of sonar. The simulation and experimental data processing results show that the tomographic synthetic aperture sonar (SAR) imaging method can obtain the fine contour features of the target, which is conducive to the accurate identification of underwater small targets.
    • [1] 杜选民,曾赛.圆周合成孔径声呐技术综述[J].声学技术, 2022, 41(3):323-333.

      DU Xuanmin, ZENG Sai. Progress on techniques of circular synthetic aperture sonar[J]. Technical Acoustics, 2022, 41(3):323-333.

      [2]

      LIN H, MA P F, CHEN M, et al. Basic principles, key technique and applications of tomographic SAR imaging[J]. Journal of geomatics, 2015, 40(3):1-5.

      [3]

      FERGUSON B G, WYBER R J. Application of acoustic reflection tomography[J]. J. Acoust. Soc. Am, 2005:117(5):2915-2928

      [4]

      ALESSANDRA C, PATRIZIA C, RAFFAELE M. Joint interpretation of seismic refraction tomography and electrical resistivity tomography by cluster analysis to detect buried cavities[J]. Journal of Applied Geophysics, 2020, 178:1-8.

      [5]

      PAN Y L, SHI D J, WANG H Q. et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening[J]. European Radiology, 2020, 30:4107-4116.

      [6]

      JAVIER D, FRANCISCO J, RODRÍGUEZ T. Exploring computed tomography in ichnological analysis of cores from modern marine sediments[J]. Scientific Reports, 2020, 10(1):47-69.

      [7]

      YU Y, D'ALESSANDRO M M, TEBALDINI S, et al. Signal processing options for high resolution SAR tomography of natural scenarios[J]. Remote Sensing, 2020, 12(10):1638-1645.

      [8] 曾赛,范威,杜选民.圆合成孔径声呐多点定位运动补偿[J].声学学报, 2021, 46(6):1071-1081.

      ZENG Sai, FAN Wei, DU Xuanmin. Multilateration motion compensation for circular synthetic aperture sonar imaging[J]. Acta Acustica, 2021, 46(6):1071-1081.

      [9]

      MARSTON T M, KENNEDY J L. Volumetric acoustic imaging via circular multi-pass aperture synthesis[J]. IEEE J. Ocean. Eng, 2016, 41(4):852-867.

      [10]

      FERGUSON B G, WYBER R J. Generalized framework for real aperture, synthetic aperture, and tomographic sonar imaging[J]. IEEE J. Ocean. Eng., 2009, 34(3):225-238.

      [11]

      FRIEDMAN A D, MITCHELL S K, KOOIJ T L, et al. Circular synthetic aperture sonar design[J]. IEEE Oceans, Proceedings, 2005, 6:1038-1045.

      [12]

      FAN W, KONG H, ZHANG X B. Simulation of circular synthetic aperture sonar imaging using TriKirch scattering model and experimental validation[C]//OCEANS 2017. Aberdeen, UK. IEEE, 2017:1-5.

      [13]

      PINHEIRO M, PRATS P, SCHEIBER R, et al. Tomographic 3D reconstruction from airborne circular SAR[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa. IEEE, 2010:III-21.

      [14]

      ZENG S, FAN W, DU X. Three-Dimensional Imaging of Circular Array Synthetic Aperture Sonar for Unmanned Surface Vehicle. Sensors 2022, 22, 3797.

      [15] 曾赛,杜选民,范威.采用垂直短阵的水下小目标三维层析成像方法[J].哈尔滨工程大学学报, 2020, 10(41):1584-1602.

      ZENG Sai, DU Xuanmin, FAN Wei. Three-dimensional tomography method of underwater small target using vertical array[J]. Journal of Harbin Engineering University, 2020, 10(41):1584-1602.

    • 期刊类型引用(2)

      1. 戴文舒,鲍凯凯,张国军,张文栋,陈新华. 分频带极坐标格式处理的水下目标层析成像研究. 振动与冲击. 2025(01): 325-331+342 . 百度学术
      2. 郭丽华,王子琪. 高分辨二维成像声呐电子系统的设计与实现. 传感器与微系统. 2024(06): 59-63 . 百度学术

      其他类型引用(3)

    计量
    • 文章访问数:  491
    • HTML全文浏览量:  0
    • PDF下载量:  722
    • 被引次数: 5
    出版历程
    • 收稿日期:  2023-05-30
    • 修回日期:  2023-07-24
    • 刊出日期:  2023-08-27

    目录

      /

      返回文章
      返回