Vector flow velocity measurement in combination with transverse oscillation and spatial quadrature
-
摘要: 传统的彩色多普勒成像只能测量与超声波束平行的血流速度分量,且依赖于超声波束与血管之间的夹角。超声向量血流成像是一种更加先进的血流成像技术,该方法可以直接获得血流速度的实际大小和方向,因此不依赖于超声波束与血管之间的夹角。本文从向量血流测量方法之一的横向声场法入手,简要概括了横向振荡(Transverse Os‐cillation, TO)法和空间正交(Spatial Quadrature, SQ)法两种方法的基本原理、成像过程及各自的优缺点,并提出了一种互相结合的方法,即奇偶振荡法(Odd Even Oscillation, OEO),该方法利用 SQ法快速进行波束合成,利用 TO法计算最终的速度矢量,克服了 TO法和 SQ法各自的缺点,能够有效解决 TO法成像计算量大以及 SQ法出现混叠和对噪声灵敏度高的问题。Abstract: The traditional color Doppler imaging can only measure the flow velocity component parallel to the ultrasound beam, and depends on the angle between the ultrasound beam and blood vessel. Vector flow is an advanced blood flow imaging technology which can directly obtain the actual magnitude and direction of the flow velocity without relying on the angle between the ultrasound beam and the blood vessel. This paper starts with the method of transverse oscillating acoustic field, which is one of the vector flow measurement methods, briefly summarizes the basic principles, imaging process and the advantages and disadvantages of the transverse oscillation (TO) and spatial quadrature (SQ) methods. A method which combining the two methods above, named as odd-even-oscillation (OEO) method is proposed. This method uses SQ for fast beamforming and uses TO for final velocity vector calculation, and can effectively solve the problem of large amount of imaging calculation in the TO method, and the problem of aliasing and high sensitivity to noise in the SQ method.
-
Keywords:
- flow velocity /
- color Doppler /
- vector flow /
- stransverse oscillation (TO) /
- spatial quadrature (SQ)
-
-
[1] KASAI C, NAMEKAWA K, KOYANO A, et al. Real-time two-dimensional blood flow imaging using an autocorrelation technique[J]. IEEE Transactions on Sonics and Ultrasonics, 1985, 32(3):458-464.
[2] JENSEN J A, NIKOLOV S I, YU A C H, et al. Ultrasound vector flow imaging-part I:sequential systems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(11):1704-1721.
[3] JENSEN J A, NIKOLOV S I, YU A C H, et al. Ultrasound vector flow imaging-part II:parallel systems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(11):1722-1732.
[4] HANSEN K L, NIELSEN M B, JENSEN J A. Vector velocity estimation of blood flow-A new application in medical ultrasound[J]. Ultrasound (Leeds, England), 2017, 25(4):189-199.
[5] GODDI A, FANIZZA M, BORTOLOTTO C, et al. Vector flow imaging techniques:an innovative ultrasonographic technique for the study of blood flow[J]. Journal of Clinical Ultrasound:JCU, 2017, 45(9):582-588.
[6] YIU B Y S, LAI S S M, YU A C H. Vector projectile imaging:time-resolved dynamic visualization of complex flow patterns[J]. Ultrasound in Medicine&Biology, 2014, 40(9):2295-2309.
[7] CAPINERI L, SCABIA M, MASOTTI L. A Doppler system for dynamic vector velocity maps[J]. Ultrasound in Medicine&Biology, 2002, 28(2):237-248.
[8] PASTORELLI A, TORRICELLI G, SCABIA M, et al. A realtime 2-D vector Doppler system for clinical experimentation[J]. IEEE Transactions on Medical Imaging, 2008, 27(10):1515-1524.
[9] SWILLENS A, SEGERS P, TORP H, et al. Two-dimensional blood velocity estimation with ultrasound:speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(2):327-339.
[10] JENSEN J A, MUNK P. A new method for estimation of velocity vectors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(3):837-851.
[11] ADERSON M E. Multi-dimensional velocity estimation with ultrasound using spatial quadrature[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(3):852-861.
[12] JENSEN J A. A new estimator for vector velocity estimation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48(4):886-894.
[13] UDESEN J, JENSEN J A. Investigation of transverse oscillation method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(5):959-971.
[14] UDESEN J, NIELSEN M B, NIELSEN K R, et al. Examples of in vivo blood vector velocity estimation[J]. Ultrasound in Medicine&Biology, 2007, 33(4):541-548.
[15] PEDERSEN M M, PIHL M J, HAUGAARD P, et al. Comparison of real-time in vivo spectral and vector velocity estimation[J]. Ultrasound in Medicine&Biology, 2012, 38(1):145-151.
[16] BOHS L N, GEIMAN B J, ANDERSON M E, et al. Speckle tracking for multi-dimensional flow estimation[J]. Ultrasonics, 2000, 38(1-8):369-375.
[17] WU S Y, WANG S L, LI P C. Tracking in high-frame-rate imaging[J]. Ultrasonic Imaging, 2010, 32(1):1-15.
[18] XU T T, BASHFORD G. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(5):898-908.
[19] JENSEN J A. Directional velocity estimation using focusing along the flow direction. I:theory and simulation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(7):857-872.
[20] KORTBEK J, JENSEN J A. Estimation of velocity vector angles using the directional cross-correlation method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(11):2036-2049.
[21] JENSEN J A. Directional transverse oscillation vector flow estimation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64(8):1194-1204.
[22] GOODMAN J W. Introduction to Fourier optics, second edition[J]. Optical Engineering, 1996, 35(5):1513.
[23] JENSEN J A, BRANDT A H, NIELSEN M B. Convex array vector velocity imaging using transverse oscillation and its optimization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(12):2043-2053.
[24] JENSEN J A, SVENDSEN N B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(2):262-267.
[25] JENSEN J A. Field:A program for simulating ultrasound systems[J]. Medical&Biology Engineering&Computing, 1996, 34(1):351-352.
[26] PIHL M J, MARCHER J, JENSEN J A. Phased-array vector velocity estimation using transverse oscillations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(12):2662-2675.
[27] ANDERSON M E. Spatial quadrature:a novel technique for multi-dimensional velocity estimation[C]//1997 IEEEUltrasonics Symposium Proceedings. An International Symposium (Cat. No. 97CH36118). Toronto, ON, Canada. IEEE, 1997:1233-1238.
[28] ANDERSON M E. A heterodyning demodulation technique for spatial quadrature[C]//2000 IEEEUltrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121). San Juan, PR, USA. IEEE, 2000:1487-1490.
[29] KERR R F, ANDERSON M E. Velocity envelope of vector flow estimation with spatial quadrature[C]//Medical Imaging 2003. Proc SPIE 5035, Medical Imaging 2003:Ultrasonic Imaging and Signal Processing, San Diego, California, USA. 2003, 5035:265-276.
-
期刊类型引用(1)
1. 郝鹏慧,杜宜纲,李双双,朱磊,何绪金. 向量血流技术在腹部凸阵超声探头上的应用研究. 中国医疗器械杂志. 2024(01): 1-5+25 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 509
- HTML全文浏览量: 0
- PDF下载量: 223
- 被引次数: 1