高级检索

扁平形聚酯纤维Delany-Bazley吸声模型的优化方法

Optimized Delany-Bazley sound absorption model of flat polyester fiber

  • 摘要: 作为经典吸声系数预测模型,Delany-Bazley (DB)模型在纤维材料吸声预测方面一直有着较好的应用与口碑。但对于异形截面聚酯纤维的吸声性能预测,DB模型预测效果却不尽如人意。针对DB模型中对吸声系数预测起重要影响的八个无量纲的常数,以扁平截面聚酯纤维材料为研究对象,通过实际测量纤维材料的流阻数据对DB模型中的常数进行拟合,得到扁平截面聚酯纤维材料的优化吸声模型并开展实验验证。研究结果表明,优化后的DB模型能较精确地分别预测异形截面纤维材料的吸声系数。预测数据和实验数据的误差率由原来的36.64%降低到9.16%,精确度相对提高了75.00%左右。

     

    Abstract: As a classical sound absorption coefficient prediction model, Delany-Bazley (DB) model has been widely used in sound absorption prediction of fiber materials. However, DB model can’t accurately predict the sound absorption performance of polyester fiber with special-sections. This study aims to optimize DB model for the sound absorption prediction of flat polyester fiber. The actual flow resistance data are measured to reassign parameter values in DB model. The optimized sound absorption prediction model is verified by the experimental data, and the error rate is analyzed. The results show that the optimized DB model can accurately predict the sound absorption coefficient of fiber materials with special-sections. The relative error between the predicted data and the experimental data decreases from 36.64% to 9.16%, the accuracy is improved by about 75.00%.

     

/

返回文章
返回