The method of locating rocket launching with ternary infrasonic array
-
摘要: 近些年来,基于广义互相关时延估计、单阵定向多阵定位的次声定位技术得到了广泛研究,针对时间差的获取提出了大量改进方法,这些定位方法主要是针对远程次声源的定位。然而,对于持续时间长达3~4 min且处于运动状态的次声事件的定位研究较少。提出了一种基于短时能量突变的方法进行时延估计,并结合实际站台的分布情况采用三站定位方法对火箭发射事件进行定位。结果表明:单个三元次声阵定向误差在2°以内,距离误差约为3.17%(实际的距离为52.74 km,定位误差为1.67 km),定位精度较高,说明提出的时延估计定位方法是可行的。Abstract: In recent years, infrasonic localization techniques based on generalized cross-correlation delay estimation and single-array directional multi-array localization have been widely studied, and many methods improving time difference measurement are presented. The existing localization methods are mainly used for locating remote infrasound sources. So far, only few studies have addressed the localization problem of moving infrasound events that last up to 3~4 minutes. In this paper, a time-delay estimation method based on short-time energy mutation is proposed, and a three-station localization method is used to locate rocket launch events according to the distribution of actual stations. The results show that the orientation error of a single ternary infrasound array is less than 2° and the distance error is about 3.17% in the case that the actual distance is 52.74 km and the locating error is 1.67 km, so the locating accuracy is higher. The research shows that the proposed time delay estimation locating method is feasible.
-
-
[1] KNAPP C, CARTER G. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(4):320-327.
[2] ROTH P R. Effective measurements using digital signal analysis[J]. IEEE Spectrum, 1971, 8(4):62-70.
[3] CARTER G C, NUTTALL A H, CABLE P G. The smoothed coherence transform[J]. Proceedings of the IEEE, 1973, 61(10):1497-1498.
[4] KUHN J. Detection performance of the smooth coherence transform (SCOT)[C]//ICASSP'78. IEEE International Conference on Acoustics, Speech, and Signal Processing. Tulsa, OK, USA. IEEE, 1978:678-683.
[5] SCARBROUGH K, AHMED N, YOUN D, et al. On the Scot and Roth algorithms for time delay estimation[C]//ICASSP'82. IEEE International Conference on Acoustics, Speech, and Signal Processing. Paris, France. IEEE, 1982:371-374.
[6] MENG L, LI X H, ZHANG W G, et al. The generalized cross-correlation method for time delay estimation of infrasound signal[C]//2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). Qinhuangdao, China. IEEE, 2015:1320-1323.
[7] 余文晶, 何琳, 崔立林, 等. 声源定位中的时延估计方法研究进展[C]//2016年度声学技术学术会议论文集. 武汉, 2016:236-245. [8] 王锋, 刘鹏远, 李兵. 相关Hilbert差值时延估计方法误差分析[J]. 中国测试, 2015, 41(12):14-16, 24. WANG Feng, LIU Pengyuan, LI Bing. Error analysis of TDE based on correlation Hilbert transform[J]. China Measurement &Test, 2015, 41(12):14-16, 24.
[9] 祖丽楠, 吴秀谦. 一种基于神经网络滤波的广义互相关时延估计方法的设计[J]. 化工自动化及仪表, 2012, 39(8):1023-1025. ZU Linan, WU Xiuqian. Design of generalized cross-correlation time-delay estimation based on neural network filtering[J]. Control and Instruments in Chemical Industry, 2012, 39(8):1023-1025.
[10] 路晓妹, 寇文珍, 段渭军. 基于EMD分解重构的互相关时延估计方法[J]. 测控技术, 2013, 32(7):45-48, 56. LU Xiaomei, KOU Wenzhen, DUAN Weijun. Cross-correlation delay estimation method based on EMD decomposition and reconstruction algorithm[J]. Measurement & Control Technology, 2013, 32(7):45-48, 56.
[11] 杨亦春, 郭泉, 吕君, 等. 大地震前出现的异常次声波观测研究[J]. 物理学报, 2014, 63(13):134302. YANG Yichun, GUO Quan, LÜ Jun, et al. Observation and study of precursor infrasound waves emitted before several strong earthquakes[J]. Acta Physica Sinica, 2014, 63(13):134302.
[12] 殷恒刚. 基于小波变换二次相关时延估计算法的声定位技术及试验研究[D]. 南京:南京理工大学, 2009. [13] 唐伟, 刘俊民, 王晓明, 等. 朝鲜4.13"光明星3号"卫星发射次声信号分析[J]. 环境工程, 2013, 31(1):81-84, 102. TANG Wei, LIU Junmin, WANG Xiaoming, et al. Analysis of infrasound generated by the satellite guangmingxing 3 launched on 13th April[J]. Environmental Engineering, 2013, 31(1):81-84, 102.
[14] 郭泉, 杨选辉. 运载火箭发射过程的次声波近场观测[C]//第十一届国家安全地球物理专题研讨会论文集. 西安, 2015:212-216. [15] SZUBERLA C A L, OLSON J V, ARNOULT K M. Explosion localization via infrasound[J]. The Journal of the Acoustical Society of America, 2009, 126(5):EL112-EL116.
[16] 魏新元. 基于广域传感器网络的次声源定位关键技术研究[D]. 青岛:山东科技大学, 2011. [17] 文雨迪, 任文涛, 杨宇, 等. CZ-7遥2运载火箭发射次声信号分析研究[J]. 兵器装备工程学报, 2019, 40(9):70-73. WEN Yudi, REN Wentao, YANG Yu, et al. Analysis of infrasound signals generated by CZ-7 teleport 2 launch vehicle[J]. Journal of Ordnance Equipment Engineering, 2019, 40(9):70-73.
[18] 王阳, 窦甲臣, 费春国, 等. 基于短时能量时延估计的地震动目标定位方法[J]. 振动与冲击, 2020, 39(24):164-170. WANG Yang, DOU Jiachen, FEI Chunguo, et al. A seismic target localization method based on short-time energy time delay estimation[J]. Journal of Vibration and Shock, 2020, 39(24):164-170.
[19] PICHON A L, CANSI Y. PMCC for infrasound data processing[J]. Inframatics, 2003(2):1-9.
[20] 杨庆生, 丁浩亮, 夏雅琴. 三点阵次声源定位估算法[J]. 北京工业大学学报, 2017, 43(6):819-825. YANG Qingsheng, DING Haoliang, XIA Yaqin. Source location of infrasonic by tripartite array arithmetic[J]. Journal of Beijing University of Technology, 2017, 43(6):819-825.
[21] PANG X L, WANG Y, MA Y, et al. Research on three-station location method for nuclear explosion infrasound detection[J]. Applied Mechanics and Materials, 2015, 727-728:651-655.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 652
- HTML全文浏览量: 0
- PDF下载量: 417
- 被引次数: 1