Abstract:
The method combining the world ocean simulation system (WOSS) with the Bellhop acoustic ray model and introducing the empirical formula of ocean noise is an extension of the network channel simulation method for NS-Miracle simulation system. In order to verify the extended simulation system, three simulation methods of underwater sensor network with five nodes centralized topological structure, which are based on the empirical model of underwater acoustic channel characteristics, the Bellhop ray model and the WOSS combined with Bellhop ray model respectively, are adopted in the experiment. The results show that in the same network environment, the average throughput and average delay of two sets of experiments with the Bellhop channel simulation model are very close, however, the average throughput and delay obtained by the first set of simulations with the empirical channel model are slightly different from the latter two sets of data; and the average packet error rate of the three sets is very close. The operations of the same underwater sensor network structure in three different sea areas are simulated, and the influence of WOSS on the system simulation results is analyzed. The results show that the simulation data of the system with WOSS in different sea areas are more dynamic than those without WOSS. The extended NS2/NS-Miracle simulation system can more accurately simulate the relevant characteristics of the actual underwater acoustic network. In addition, three MAC protocols of ALOHA-CS, CSMA/CA and DACAP are simulated and analyzed by the extended system. The results show that the CSMA/CA protocol is more suitable for centralized underwater sensor networks than the other two protocols.