高级检索

基于声呐点云数据的输水隧洞掉块检测算法

Block Fall Detection Algorithm for Water Conveyance Tunnels Based on Sonar Point Cloud Data

  • 摘要: 输水隧洞的掉块检测对隧洞的长期稳定运行意义重大。本文提出了一种基于声呐点云数据的输水隧洞掉块检测算法,该方法利用环扫声呐采集试验场地的三维点云数据,对获取到的原始点云数据进行降采样和基于隧洞几何形状的初步去噪后,通过样本一致性算法根据高程差将掉块点云与底面点云分离,最后在网格划分的基础上,通过遗传算法中的自然选择机制解决了Alpha Shape算法的滚动圆半径优化问题,采用改进后的Alpha Shape算法精确地提取出掉块边界,并恢复出完整的隧洞点云模型。实验结果表明,对大尺寸掉块检测率可以达到100%,中尺寸掉块检测概率达到92%,小尺寸掉块检测率达到88%,不存在虚检的情况,并且可以精确的筛选出隧洞底部掉块的边界点,掌握掉块的空间分布与形态特征,研究工作可以为隧洞安全巡检提供数据支撑。

     

    Abstract: The identification of fallen blocks in water transport tunnels is crucial for ensuring long-term operational stability. This paper presents a sonar point cloud-based algorithm for detecting fallen blocks, which uses ring-scanning sonar to collect 3D point cloud data. After downsampling and geometry-based denoising, fallen blocks are separated from the tunnel bottom via sample consistency estimation based on elevation differences. An improved Alpha Shape algorithm optimizes the rolling circle radius using a genetic algorithm's natural selection mechanism, enabling accurate boundary extraction and complete point cloud model reconstruction. Experimental results show 100% detection rate for large blocks, 92% for medium-sized, and 88% for small ones, with no false positives. The method precisely identifies tunnel bottom block boundaries and captures their spatial distribution and morphological features, providing data support for tunnel safety inspections.

     

/

返回文章
返回