Progress in the application of ultrasound elastography in inflammatory bowel disease
-
摘要:
超声弹性成像技术(ultrasonic elastography, UE)是一种非侵入性评估组织组织硬度,进而反应组织水肿、坏死及纤维化的新兴成像技术,目前应用于临床的超声弹性成像技术主要包括以下几类:应变弹性成像(strain elastography, SE)、瞬时弹性成像(transient elastography, TE)、声辐射脉冲弹性成像(acoustic radiation force pulse elastic imaging, ARFI)、实时剪切波弹性成像(shear wave elastic imaging, SWE)。炎症性肠病是消化道慢性反复性炎症性病变为主的一种疾病,主要包括克罗恩病和溃疡性结肠炎。对其活动性及并发症的评估是指导治疗、预测预后的重要一环。相较于内镜、磁共振(magnetic resonance imaging, MRI)及CT成像,超声弹性成像具有无创、无辐射、易于耐受等优点。文章针对现阶段超声弹性成像技术(UE)在炎症性肠病中的应用进展进行综述,旨在为炎症性肠病的临床诊断、监测及疗效评估提供参考。
Abstract:Ultrasonic elastography (UE) is a non-invasive imaging technology for detecting tissue stiffness to obtain more information about tissue edema, necrosis, and fibrosis. Currently, ultrasonic elastography techniques applied in clinics mainly include the following categories:strain elastography (SE),transient elastography (TE), acoustic radiation force impulse elastography (ARFI), andshear wave elastography (SWE). Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease of the digestive tract, including Crohn's disease and ulcerative colitis. Evaluating its activity and complications is an important part of guiding treatment and predicting prognosis. Compared with endoscopy, magnetic resonance imaging (MRI), and CT imaging, ultrasonic elastography has the advantages of being non-invasive, non-radiation, and easily tolerated by patients. This article reviews the current application progress of UE in inflammatory bowel disease, aiming to provide a reference for clinical diagnosis, monitoring, and efficacy evaluation of inflammatory bowel disease.
-
0 引 言
炎症性肠病(inflammatory bowel disease, IBD)是以消化道慢性反复性炎症性病变为主的一种疾病,主要包括克罗恩病(Crohn disease, CD)和溃疡性结肠炎(ulcerative colitis, UC)。病因尚不明确,既往研究表明它是遗传、环境、免疫和微生物因素共同作用的结果。20世纪末,炎症性肠病主要发生在北美和欧洲,患者总人数分别超过
1500 万人和2000 万人。近年来,由于工业化的普及,炎症性肠病在亚洲国家发病率逐年上升,给患者家庭及社会经济带来极大的负担[1]。因此,对炎症性肠病的早期发现、诊断、疗效监测及并发症评估在该病治疗过程中尤为重要。目前,诊断炎症性肠病及判断其活动度的金标准仍然是内镜检查,辅以适当的检验标准,然而内镜检查为侵入性,可重复性低,患者依从性较差,且有出血、肠穿孔等风险。CT检查具有辐射性,磁共振检查价格昂贵,成像时间长且易受运动影响,均不适用于溃疡性结肠炎及克罗恩病的长期随访监测。
超声弹性成像技术(ultrasonic elastography, UE)是一种新型超声诊断技术,通过内在或外在激励获得组织硬度信息,具有无辐射、非侵入、便捷安全的优点,有望成为对IBD诊断、疗效评估及病程监测的首选影像学检查技术,其在IBD中的应用综述如下。
1 UE的原理及分类
超声弹性成像技术是一种评估组织硬度的新兴技术,始于1990年[2],它根据特定病理或生理过程导致的组织弹性变化提供定性或定量的信息以诊断疾病,近年来因其无创性在临床中受到广泛关注及应用。
UE 技术的原理为:超声探头作用于组织,诱导其产生弹性变化,实现对组织机械性能的定性和定量评估。UE 技术主要分为两大类:(1)基于应变的准静态弹性成像,即应变弹性成像(strain elastography, SE);(2)基于剪切波的动态成像,即瞬时弹性成像(transient elastography, TE)、二 维 剪 切 波 弹 性 成 像(two-dimensional shear-wave elastography, 2D-SWE)、三维剪切波弹性成像(three-dimensional shear-wave elastography, 3D-SWE)、声辐射力脉冲弹性成像(acoustic radiation force impulse strain imaging, ARFI)[3]。SE 基于超声探头压缩前后组织位移信息提供组织中感兴趣区域和相邻组织之间的相对弹性指数。TE 等则是基于承受周期性剪切力弹性介质测量剪切波速,从而定量反映组织硬度。剪切波速度越快,提示组织硬度越高。目前临床应用最广泛的超声弹性成像技术是2D-SWE。
2 超声弹性成像技术在炎症性肠病中的应用
炎症性肠病引起的肠壁水肿增厚、炎性增生、纤维性增生及瘢痕挛缩均可导致肠腔狭窄。通过评估肠壁弹性判断肠腔狭窄类型,对指导治疗及预测预后具有至关重要的作用。病理是确定肠道狭窄类型的金标准,但由于内镜检查具有侵入性,且受限于对肠粘膜的表面检查,存在粘膜活检深度不足的问题。此外,由于狭窄孔内炎症和纤维化的异质性分布而出现采样误差。磁共振(magnetic resonance imaging, MRI)成像能够在非侵入情况下获取肠壁炎症信息,有文献报道磁共振成像是评估克罗恩病患者肠道狭窄类型的可靠工具,且对肠系膜脂肪组织的评估有利于克罗恩病的诊断[4-6],然而磁共振成像耗时长,价格昂贵,且易受运动影响。同时CT检查具有辐射性。相比之下,超声具有性价比高、安全便捷、实时动态的优点,欧洲炎症性肠病共识已将肠道超声纳入IBD监测的常规检查[7-9]。
2.1 超声弹性成像在判断IBD炎症类型中的应用
2.1.1 超声弹性成像在判断溃疡性结肠炎炎症类型的应用
溃疡性结肠炎(ulcerative colitis, UC)是结肠粘膜的特发性慢性炎症性疾病,始于直肠,通常连续向近端延伸。病变主要局限于肠壁黏膜与黏膜下层,呈连续性、弥漫性分布,活动期时出现弥漫性淋巴细胞、浆细胞、单核细胞等细胞浸润,黏膜糜烂、溃疡及隐窝炎、隐窝脓肿。随着疾病进入慢性期,隐窝结构紊乱、腺体萎缩变形、排列紊乱、数目减少,杯状细胞减少,出现潘氏细胞化生及炎性息肉。患者主要表现为腹痛、腹泻、血便等。据估计,2023年,全球溃疡性结肠炎的患者数量高达500万例,且发病率仍在持续增长[10]。肠壁炎症类型的判断对于评估疗效及预测预后至关重要。
2019年Goertz等[11]对20名UC患者和13名健康志愿者进行肠壁ARFI成像。该研究认为UC患者肠壁ARFI值与健康志愿者无显著差异,仍有待进一步研究证实弹性成像在UC肠狭窄类型鉴别中的作用。2020年Ma等[12]对肠狭窄的20例炎症性肠病患者进行超声弹性成像判定其狭窄类型,以内镜活检结果为金标准,发现炎症组和纤维化组的平均剪切波速、杨氏模量都明显不同,弹性超声剪切波速平均值分别为2.77 m·s−1、3.63 m·s−1,杨氏模量平均值为21.41 kPa、 42.11 kPa,证实了弹性成像可以区分IBD患者的炎症性肠狭窄和纤维性肠狭窄。为进一步探索不同弹性成像技术在肠道炎症类型鉴别中的作用,2022年Dal Buono等[13]对相关文献进行比较后指出:相较于应变弹性成像及声辐射脉冲成像,点剪切波弹性成像在评估IBD患者肠道炎症类型中具有更优越的性能。
2.1.2 超声弹性成像在区分克罗恩病炎症类型中的应用
克罗恩病(CD)是炎症性肠病的一种,是可以发生在胃肠道任何部位的慢性炎症,累及肠壁全层,病程呈进行性和破坏性。相较于溃疡性结肠炎,克罗恩病更容易并发肠狭窄、瘘管、脓肿等并发症。其在世界范围内的发病率正在增加。克罗恩病的病因尚不明确,目前认为与免疫系统失调、微生物群改变、遗传易感性和环境因素等有关。区分肠道炎症及狭窄类型是决定患者治疗方案的关键因素。对CD患者肠道炎症类型的评估既往多采用内镜检查及MRI检查,大量研究分别以内镜及MRI作为标准,评估超声弹性成像在区分CD肠道炎症类型中的作用,证实了超声应变弹性成像、ARFI及剪切波弹性(shear wave elastography, SWE)成像可以区分肠壁炎性水肿和纤维性水肿,确定肠壁纤维化程度[5, 14-21]。然而,有研究认为CD患者肠壁平滑肌肥大所致肠壁弹性改变多于肠壁纤维化对肠壁弹性的影响[22-23],Serra等[24]和Sidhu等[25]的研究更是指出肠壁平均弹性应变比及肠壁剪切波弹性成像不能区分CD患者肠壁纤维化及炎症,但由于样本量小,且CD患者肠壁纤维化、炎症与固有肌层肥大通常相互叠加,其结论有待被进一步证实。
Vestito等[26]对超声弹性成像在克罗恩病患者纤维性肠狭窄检测的既往研究进行了Meta分析,发现217名克罗恩病患者的231个肠段中纤维狭窄肠段的合并标准化平均应变比和合并标准化平均应变值均高于无纤维狭窄的肠段,进而证实了超声弹性成像在克罗恩病患者的纤维性肠狭窄中的诊断价值。2018年Chen等[27]对35名CD患者狭窄回肠或结肠手术切除前1周行超声剪切波弹性成像,将狭窄肠壁的SWE值分别与切除肠标本中纤维化和炎症的级别和严重程度进行比较,发现狭窄肠壁的平均SWE值在严重纤维化中显著升高(23.0 kPa),高于中度(17.4 kPa)和轻度纤维化(14.4 kPa),且使用22 kPa作为区分轻度与中重度纤维化的临界值时,其敏感性和特异性分别为69.6%和91.7%, 曲线下面积(area under the curve, AUC)为0.822,虽然样本量太小导致不同级别的炎症平均SWE值没有显著差异,但该研究在一定程度上证实了SWE在检测CD患者的肠纤维化方面是可行和准确的。为进一步探索弹性定量成像与肠壁炎症类型的关系,2023年Zhang等[28]研究发现,将纤维化病变的临界值确定为21.30 kPa时,剪切波弹性成像鉴别肠壁纤维性炎的敏感性为88.90%,特异性高达89.50%,证实了剪切波弹性成像有助于检测肠壁纤维化病变。
应变弹性成像到声辐射脉冲弹性成像再到剪切波弹性成像,逐步实现了对CD患者肠壁定性到半定量再到定量超声弹性评估,为了比较这三种技术鉴别克罗恩病肠狭窄类型的诊断效能,Ding等[29]对CD患者分别进行3种弹性成像方法检查,发现相较于应变弹性成像和声辐射脉冲弹性成像,剪切波弹性成像在评估和鉴别克罗恩病的肠狭窄方面表现最佳,当剪切波速超过2.73 m·s−1时,敏感性达75%,特异性高达100%。该研究证明了弹性成像可以鉴别CD肠狭窄类型,还进一步提供了不同弹性成像技术的诊断性能,为临床实践提供了参考依据。
2.2 超声弹性成像在评估IBD活动度及疗效监测中的应用
2.2.1 超声弹性成像在判断UC活动度及疗效监测的应用
既往研究将光学相干弹性成像技术用于溃结小鼠模型中[30-32],证明光学相干弹性成像有助于无创检测UC,但该应用仅局限于动物模型。2011年,Rustemovic等[33]将经直肠超声弹性成像应用于IBD患者,该研究认为活动期UC患者和健康对照组之间的直肠壁应变比无显著差异,然而,Ishikawa等[34]对37例UC患者进行超声弹性成像和结肠镜检查,并分别对炎症程度进行分类,发现超声弹性成像与结肠镜结果具有良好的一致性,证实超声弹性成像可以反应UC活动度。在此基础上,2022年Yamada等[35]对26名UC患者进行超声剪切波弹性成像,测量乙状结肠的SWE并探讨其与Lichtiger指数和溃疡性结肠炎内镜严重程度指数的相关性,发现粘膜愈合组和活动组之间的SWE值差异显著(2.40 vs 1.62 m·s−1),SWE值以2.2 m·s−1为截断值时,确定患者黏膜治愈的AUC为0.909,敏感度为0.864,特异度为0.750,揭示了SWE与临床严重程度和内镜活动之间呈负相关,进而证实了SWE有助于评估UC活动性,是评估疾病严重程度的一种非侵入性方法,为UC患者的诊断及随访评估提供了无创便捷实用的检测手段。图1为一名活动性UC患者降结肠的超声SWE图像。图1(a)为该患者降结肠横切面的灰阶超声图像,图1(b)为图1(a)对应切面的超声SWE图像,患者肠壁表现为均匀的蓝色,提示肠壁较软。
2.2.2 超声弹性成像在判断CD活动度及疗效监测中的应用
肠壁弹性成像对肠壁水肿及纤维化的区分最终目的是确定患者进一步治疗方案,CD患者肠壁水肿性炎通常药物治疗即可,而纤维性肠狭窄常常需要外科手术或内镜下球囊扩张治疗才可改善症状。2018年Orlando等[36]对即将接受抗肿瘤坏死因子(TNF)治疗的50名CD患者在基线以及抗TNF治疗后进行了肠道常规超声和超声弹性成像,用肠系膜组织和肠壁之间的应变比量化肠壁硬度,应变比≥2用于鉴定严重的回肠纤维化。最终5名患者因肠梗阻接受了手术,8名患者达到透壁愈合,手术患者较非手术患者基线应变率明显更高(2.22 vs 1.48),ROC曲线分析证实应变比临界值为2时,提示肠壁严重纤维化,能够预测抗TNF治疗后的CD相关手术,敏感性为88%,特异性为80%,ROC下的面积为0.86,证实了超声弹性成像在预测抗TNF治疗CD患者的疗效及手术预后的准确性。
为进一步探索超声定量弹性成像在CD患者疗效预测中的价值,2022年Chen等[37]对进行抗TNF治疗的30名CD患者在基线和治疗后第2周、第6周和第14周分别进行肠道超声剪切波弹性成像,发现与基线相比,早在第2周,药物反应组的SWE值显著降低,无反应组基线SWE值明显高于反应组(21.3 vs 15.3 kPa),进而证实肠道超声可以在抗TNF治疗后的第2周评估药物反应情况。相较于基于临床和结肠镜检查在治疗后第14周评估CD患者抗肿瘤坏死因子治疗的早期反应,肠道弹性成像可以在更早期预测抗肿瘤坏死因子治疗的疗效,进而为调整患者治疗策略提供指导。2024年,Chen等扩大样本量,纳入130例CD患者进行肠道剪切波弹性成像并随访33个月,发现SWE评估肠道僵硬度是CD患者疾病行为进展的独立预测指标,且诊断时SWE值大于12.75 kPa的CD患者容易发展为狭窄性或穿透性疾病,反映出SWE在判断患者炎症预后方面具有可靠参考价值。
2.3 多模态超声在评估IBD中的应用
2.3.1 多模态超声在UC中的应用
基于对UC和CD患者肠道超声弹性成像的研究,2021年Marin等[38]试图探索制定肠道超声评分系统以更客观地评估肠道炎症活动度,发现联合肠壁厚度、肠壁血流Limberg分型、ARFI值几个指标对诊断IBD患者复发具有87%的敏感性和92%的特异性,AUC为
0.9492 ;区分UC缓解和复发敏感性为86.85%,特异性为94%,AUC为0.9740 ,客观反映出包括超声弹性成像在内的多模态超声联合成像在UC活动性评估中的重要作用。2024年,Mohamed等[39]联合常规超声、彩色多普勒超声及超声SE对IBD患者成像,进一步证实各种超声模态联合相较于单一超声模态观察IBD患者活动性具有更高的敏感性(100%)及特异性(84%)。2.3.2 多模态超声在CD中的应用
弹性成像虽然被证实在评估肠道狭窄类型中有意义,但易受患者肥胖、肠道蠕动及呼吸幅度等多种因素影响,可重复性欠佳,所以有研究认为多模态超声对CD患者的评估更有价值,2018年Quaia等[40]将弹性成像与超声造影、常规超声相结合,评估CD患者的肠狭窄类型,并将内镜分类作为参考标准,发现三者结合具有更高的灵敏度、特异度及诊断准确性。2019年,Thimm等[41]对3例青少年CD患者进行超声造影和剪切波弹性成像检查,发现两者结合使用可以更好地表征纤维化和炎症的程度。然而,2022年Wu等[42]试图探索超声弹性成像在评估CD患者达到黏膜愈合的价值,将124例CD患者的380个受累肠段进行超声评估,得到包括超声平均杨氏模量及剪切波速度在内的8个指标,同时以内镜检查结果将其分为黏膜层愈合和非黏膜层愈合,两组的8个超声参数有显著差异(P<0.05)。选择AUC性能较好的四个重要参数(肠壁厚度、肠周脂肪浸润,肠壁血流Limberg分型,肠壁分层缺失)来建立超声回归模型,以预测粘膜愈合。此模型的AUC分别为0.975,证实了多模态超声具有评估克罗恩病(CD)节段粘膜愈合的潜力,但在该研究中,超声弹性成像并未被纳入回归模型。总体而言,超声弹性成像技术对于CD患者疾病预后的预测价值还有待进一步探索与证实。
3 总结与展望
相较于传统的内镜及放射学检查,超声成像具有便捷无辐射、非侵入、可重复性高、患者耐受性好等优点,适用于IBD患者尤其是孕妇及儿童IBD患者的长期随访监测。但由于超声弹性成像质量及测量结果易受多种因素的影响,不仅要求操作医师手法稳定、采取同一部位进行测量,也对受检者要求较高,易受呼吸、肥胖、肠胀气、肠道内容物及肠蠕动的影响,测量结果难以控制达到稳定,既往研究中纳入的样本量较小,采用的测量方法也各不相同,异质性较大。但超声弹性成像对于评估IBD疾病活动度,鉴别炎症类型及预测预后具有重要价值,在IBD诊断及随访监测中发挥着不可替代的作用,有研究证明可以将IBD药物疗效评估提前到治疗后2 w,相较于肠镜在治疗4 w后才可评估疗效,超声弹性成像缩短了疗效判断的时间,有助于临床及时调整治疗策略,减少患者药物负担及经济损失。随着肠道超声弹性成像操作的标准化、受检者肠道准备工作的完善,以及更多多中心大样本的研究的开展,超声弹性成像有望成为评估IBD不可或缺的超声新技术。
-
[1] PARK J, CHEON J H. Incidence and prevalence of inflammatory bowel disease across Asia[J]. Yonsei Medical Journal, 2021, 62(2): 99-108. DOI: 10.3349/ymj.2021.62.2.99
[2] GENNISSON J L, DEFFIEUX T, FINK M, et al. Ultrasound elastography: principles and techniques[J]. Diagnostic and Interventional Imaging, 2013, 94(5): 487-495. DOI: 10.1016/j.diii.2013.01.022
[3] OZTURK A, GRAJO J R, DHYANI M, et al. Principles of ultrasound elastography[J]. Abdominal Radiology, 2018, 43(4): 773-785. DOI: 10.1007/s00261-018-1475-6
[4] AVILA F, CARON B, HOSSU G, et al. Magnetic resonance elastography for assessing fibrosis in patients with Crohn’s disease: a pilot study[J]. Digestive Diseases and Sciences, 2022, 67(9): 4518-4524. DOI: 10.1007/s10620-021-07311-9
[5] MAZZA S, CONFORTI F S, FORZENIGO L V, et al. Agreement between real-time elastography and delayed enhancement magnetic resonance enterography on quantifying bowel wall fibrosis in Crohn’s disease[J]. Digestive and Liver Disease, 2022, 54(1): 69-75. DOI: 10.1016/j.dld.2021.05.018
[6] JENSEN L J, LOCH F N, KAMPHUES C, et al. Feasibility of in vivo magnetic resonance elastography of mesenteric adipose tissue in Crohn’s disease[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13(8): 4792-4805. DOI: 10.21037/qims-23-41
[7] LAMB C A, KENNEDY N A, RAINE T, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults[J]. Gut, 2019, 68(Suppl 3): s1-s106. DOI: 10.1136/gutjnl-2019-318484
[8] LAUBE R, SELINGER C P, SEOW C H, et al. Australian inflammatory bowel disease consensus statements for preconception, pregnancy and breast feeding[J]. Gut, 2023, 72(6): 1040-1053. DOI: 10.1136/gutjnl-2022-329304
[9] 刘梦瑶, 刘茹涵, 姚一静, 等. 应用DeeplabV3+网络实现小儿髋关节超声图像识别[J]. 声学技术, 2022, 41(2): 235-239. DOI: 10.3969/j.issn.1000-3630.2022.2.sxjs202202013 LIU Mengyao, LIU Ruhan, YAO Yijing, et al. Application of DeeplabV3+ network in ultrasonic image recognition of pediatric hip joint[J]. Technical Acoustics, 2022, 41(2): 235-239. DOI: 10.3969/j.issn.1000-3630.2022.2.sxjs202202013
[10] LE BERRE C, HONAP S, PEYRIN-BIROULET L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-584. DOI: 10.1016/S0140-6736(23)00966-2
[11] GOERTZ R S, LUEKE C, SCHELLHAAS B, et al. Acoustic radiation force impulse (ARFI) shear wave elastography of the bowel wall in healthy volunteers and in ulcerative colitis[J]. Acta Radiologica Open, 2019, 8 (4): 2058460119840969.
[12] MA C, HUANG P L, KANG N, et al. The clinical value of multimodal ultrasound for the evaluation of disease activity and complications in inflammatory bowel disease[J]. Annals of Palliative Medicine, 2020, 9(6): 4146-4155. DOI: 10.21037/apm-20-2162
[13] DAL BUONO A, FAITA F, PEYRIN-BIROULET L, et al. Ultrasound elastography in inflammatory bowel diseases: a systematic review of accuracy compared with histopathological assessment[J]. Journal of Crohn’s & Colitis, 2022, 16(10): 1637-1646.
[14] STIDHAM R W, XU J, JOHNSON L A, et al. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease[J]. Gastroenterology, 2011, 141 (3): 819-826. e1.
[15] DILLMAN J R, STIDHAM R W, HIGGINS P D, et al. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model[J]. Radiology, 2013, 267(3): 757-766. DOI: 10.1148/radiol.13121775
[16] DILLMAN J R, STIDHAM R W, HIGGINS P D, et al. Ultrasound shear wave elastography helps discriminate low-grade from high-grade bowel wall fibrosis in ex vivo human intestinal specimens[J]. Journal of Ultrasound in Medicine, 2014, 33(12): 2115-2123. DOI: 10.7863/ultra.33.12.2115
[17] FRAQUELLI M, BRANCHI F, CRIBIÙ F M, et al. The role of ultrasound elasticity imaging in predicting ileal fibrosis in Crohn’s disease patients[J]. Inflammatory Bowel Diseases, 2015, 21(11): 2605-2612. DOI: 10.1097/MIB.0000000000000536
[18] FUFEZAN O, ASAVOAIE C, TAMAS A, et al. Bowel elastography-a pilot study for developing an elastographic scoring system to evaluate disease activity in pediatric Crohn’s disease[J]. Medical Ultrasonography, 2015, 17(4): 422-430.
[19] SCONFIENZA L M, CAVALLARO F, COLOMBI V, et al. In-vivo axial-strain sonoelastography helps distinguish acutely-inflamed from fibrotic terminal ileum strictures in patients with Crohn’s disease: preliminary results[J]. Ultrasound in Medicine & Biology, 2016, 42(4): 855-863.
[20] LO RE G, PICONE D, VERNUCCIO F, et al. Comparison of US strain elastography and entero-MRI to typify the mesenteric and bowel wall changes during Crohn’s disease: a pilot study[J]. BioMed Research International, 2017, 2017: 4257987.
[21] GOERTZ R S, LUEKE C, WILDNER D, et al. Acoustic radiation force impulse (ARFI) elastography of the bowel wall as a possible marker of inflammatory activity in patients with Crohn’s disease[J]. Clinical Radiology, 2018, 73(7): 678.e1-e5. DOI: 10.1016/j.crad.2018.02.005
[22] LU C, GUI X, CHEN W, et al. Ultrasound shear wave elastography and contrast enhancement: effective biomarkers in Crohn’s disease strictures[J]. Inflammatory Bowel Diseases, 2017, 23(3): 421-430. DOI: 10.1097/MIB.0000000000001020
[23] ABU-ATA N, DILLMAN J R, RUBIN J M, et al. Ultrasound shear wave elastography in pediatric stricturing small bowel Crohn disease: correlation with histology and second harmonic imaging microscopy[J]. Pediatric Radiology, 2023, 53(1): 34-45. DOI: 10.1007/s00247-022-05446-z
[24] SERRA C, RIZZELLO F, PRATICO' C, et al. Real-time elastography for the detection of fibrotic and inflammatory tissue in patients with stricturing Crohn’s disease[J]. Journal of Ultrasound, 2017, 20(4): 273-284. DOI: 10.1007/s40477-017-0265-2
[25] SIDHU S D, JOSEPH S, DUNN E, et al. The utility of contrast enhanced ultrasound and elastography in the early detection of fibro-stenotic ileal strictures in children with Crohn’s disease[J]. Pediatric Gastroenterology, Hepatology & Nutrition, 2023, 26 (4): 193.
[26] VESTITO A, MARASCO G, MACONI G, et al. Role of ultrasound elastography in the detection of fibrotic bowel strictures in patients with Crohn’s disease: systematic review and meta-analysis[J]. Ultraschall in der Medizin, 2019, 40(5): 646-654. DOI: 10.1055/a-0865-1842
[27] CHEN Y J, MAO R, LI X H, et al. Real-time shear wave ultrasound elastography differentiates fibrotic from inflammatory strictures in patients with Crohn’s disease[J]. Inflammatory Bowel Diseases, 2018, 24(10): 2183-2190. DOI: 10.1093/ibd/izy115
[28] ZHANG M, XIAO E, LIU M, et al. Retrospective cohort study of shear-wave elastography and computed tomography enterography in Crohn’s disease[J]. Diagnostics (Basel), 2023, 13(11): 1980. DOI: 10.3390/diagnostics13111980
[29] DING S S, FANG Y, WAN J, et al. Usefulness of strain elastography, ARFI imaging, and point shear wave elastography for the assessment of crohn disease strictures[J]. Journal of Ultrasound in Medicine, 2019, 38(11): 2861-2870. DOI: 10.1002/jum.14989
[30] NAIR A, LIU C H, DAS S, et al. Detecting murine inflammatory bowel disease using optical coherence elastography[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018, 830-833.
[31] NAIR A, LIU C H, SINGH M, et al. Assessing colitis ex vivo using optical coherence elastography in a murine model[J]. Quantitative Imaging in Medicine and Surgery, 2019, 9(8): 1429-1440. DOI: 10.21037/qims.2019.06.03
[32] ZHU Y, JOHNSON L A, RUBIN J M, et al. Strain-photoacoustic imaging as a potential tool for characterizing intestinal fibrosis[J]. Gastroenterology, 2019, 157(5): 1196-1198. DOI: 10.1053/j.gastro.2019.07.061
[33] RUSTEMOVIC N, CUKOVIC-CAVKA S, BRINAR M, et al. A pilot study of transrectal endoscopic ultrasound elastography in inflammatory bowel disease[J]. BMC Gastroenterology, 2011, 11: 113. DOI: 10.1186/1471-230X-11-113
[34] ISHIKAWA D, ANDO T, WATANABE O, et al. Images of colonic real-time tissue sonoelastography correlate with those of colonoscopy and may predict response to therapy in patients with ulcerative colitis[J]. BMC Gastroenterology, 2011, 11: 29. DOI: 10.1186/1471-230X-11-29
[35] YAMADA K, ISHIKAWA T, KAWASHIMA H, et al. Evaluation of ulcerative colitis activity using transabdominal ultrasound shear wave elastography[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(1): 618-626. DOI: 10.21037/qims-21-403
[36] ORLANDO S, FRAQUELLI M, COLETTA M, et al. Ultrasound elasticity imaging predicts therapeutic outcomes of patients with Crohn’s disease treated with anti-tumour necrosis factor antibodies[J]. Journal of Crohn’s & Colitis, 2018, 12(1): 63-70.
[37] CHEN Y J, CHEN B L, LIANG M J, et al. Longitudinal bowel behavior assessed by bowel ultrasound to predict early response to anti-TNF therapy in patients with Crohn’s disease: a pilot study[J]. Inflammatory Bowel Diseases, 2022, 28 (suppl 2): S67-S75.
[38] MARIN A M, CALAPOD O P, MOLDOVEANU A C, et al. Non-invasive ultrasonographic score for assessment of the severity of inflammatory bowel disease[J]. Ultrasound in Medicine & Biology, 2021, 47(4): 932-940.
[39] MOHAMED E M A A, ESKANDER A E, MAHMOUD R O, et al. Combined gray scale ultrasonography and Doppler diagnostic tools with strain elastography in assessment of inflammatory bowel disease in pediatrics patients[J]. Journal of Ultrasound, 2024, 27(3): 537-544. DOI: 10.1007/s40477-024-00870-3
[40] QUAIA E, GENNARI A G, COVA M A, et al. Differentiation of inflammatory from fibrotic ileal strictures among patients with Crohn’s disease based on visual analysis: feasibility study combining conventional B-mode ultrasound, contrast-enhanced ultrasound and strain elastography[J]. Ultrasound in Medicine & Biology, 2018, 44(4): 762-770.
[41] THIMM M A, CUFFARI C, GARCIA A, et al. Contrast-enhanced ultrasound and shear wave elastography evaluation of Crohn’s disease activity in three adolescent patients[J]. Pediatric Gastroenterology, Hepatology & Nutrition, 2019, 22 (3): 282-290.
[42] WU S, ZENG L, LI W, et al. The value of multi-modes of ultrasound in evaluating segmental mucosal healing in patients with Crohn’s disease[J]. Digestive and Liver Disease, 2022, 54(6): 763-770. DOI: 10.1016/j.dld.2021.12.009